4. 3. 2 Measures, Shape and Space Dimension (Key Stage 3)

Unit	Learning objectives	Suggested time ratio
Measures in 2-D and 3	-D Figures	
Estimation in Measurement	 recognize the approximate nature of measurement and choose an appropriate measuring tool and technique for a particular purpose choose an appropriate unit and the degree of accuracy for a particular purpose develop estimation strategies in measurement handle and reduce errors in measurement estimate, measure and calculate lengths, areas, capacities, volumes, weights, rates, etc. 	6
Simple Idea of Areas and Volumes	 find areas of simple polygons explore the formula for the area of a circle calculate circumferences and areas of circles understand and use the formulas for surface areas and volumes of cubes, cuboids, prisms and cylinders appreciate the application of formulas, besides measurement, in finding measures and be aware of the accumulated errors arisen **explore the maximum area of figures for a given perimeter **design a container by cutting squares from the 4 corners of a sheet of A4 paper to maximize the capacity of the container 	15
More about Areas and Volumes	 calculate arc lengths and areas of sectors understand and use the formulas for volumes of pyramids, circular cones and spheres understand and use the formulas for surface areas of right circular cones and spheres understand and use the relationships between sides, surface areas and volumes of similar figures distinguish between formulas for length, area, volume by considering dimensions 	18

Note: The objectives with asterisk (**) are exemplars of **enrichment topics**.

The objectives <u>underlined</u> are considered as **non-foundation** part of the syllabus.

Unit	Learning objectives	Suggested
		time ratio
Learning Geometry t	chrough an Intuitive Approach	
Introduction to	• recognize the common terms and notations in geometry	10
Geometry	such as line segments, angles, regular polygons, cubes and regular polyhedra (Platonic solids) etc.	
	 identify types of angles and polygons 	
	 construct 3-D solids and explore their properties, such as 	
	Euler's formula	
	• sketch the 2-D representation of simple solids	
	• sketch the cross-sections of the solids	
	• overview tools of geometry and explore ways of using	
	them to construct polygons, circles, parallel and	
	perpendicular lines	
	• **recognize some semi-regular polyhedra (Archimedean	
	Solids)	
Transformation and	recognize reflectional and rotational symmetries in	6
Symmetry	2-dimensional (2-D) shapes	
	• recognize the effect on 2-D shapes after the transformation	
	including reflection, rotation, translation,	
	dilation/contraction etc.	
	• appreciate the symmetrical shapes around and	
	transformations on shapes used in daily-life	
	• **construct and design tile patterns	
Congruence and	• recognize the properties for congruent and similar triangles	14
Similarity	• extend the ideas of transformation and symmetry to explore	
	the conditions for congruent and similar triangles	
	• recognize the minimal conditions in fixing a triangle	
	• identify whether 2 triangles are congruent/similar with	
	simple reasons	
	• explore and justify the methods to construct angle	
	bisectors, perpendicular bisectors and special angles by	
	compasses and straight edges	
	• <u>appreciate the construction of lines and angles with</u>	
	minimal tools at hand	
	• ** discuss the possibility of trisecting an angle by	
	compasses and straight edges	
	• **explore some shapes in fractal geometry	

Note: The objectives with asterisk (**) are exemplars of **enrichment topics**.

The objectives <u>underlined</u> are considered as **non-foundation** part of the syllabus.

Unit	Learning objectives	Suggested
		time ratio
Angles related with	• recognize different types of angles	18
Lines and Rectilinear	• explore and use the angle properties associated with	
Figures	intersecting lines and parallel lines	
	• explore and use the properties of lines and angles of	
	triangles	
	• explore and use the formulas for the angle sum of the	
	interior angles and exterior angles of polygons	
	• explore regular polygons that tessellate	
	• <u>appreciate the past attempts in constructing some special</u>	
	regular polygons with minimal tools at hand	
	• <u>construct some special regular polygons using straight</u>	
	edges and compasses	
	 **discuss past attempts in constructing some special 	
	regular polygons such as 17-sided regular polygons	
More about 3-D Figures	• extend the idea of symmetry in 2-D figures to recognize	8
	and appreciate the reflectional and rotational symmetries in	
	cubes and tetrahedron	
	• explore and identify the net of a given solid	
	• imagine and sketch the 3-D objects from given 2-D	
	representations from various views	
	• recognize the limitation of 2-D representations in	
	identifying the solid	
	• explore the properties of simple 3-D object, such as	
	identifying	
	• the projection of an edge on one plane	
	• the angle between a line and a plane	
	• the angle between 2 planes	
	• **investigate the reflectional and rotational symmetries in	
	other regular polyhedra	
	• **assemble a set of Soma Cube into a larger cube	
	• **explore the number of regular polyhedra	

Note: The objectives with asterisk (**) are exemplars of **enrichment topics**. The objectives <u>underlined</u> are considered as **non-foundation** part of the syllabus.

Unit	Learning objectives	Suggested
		time ratio
Learning Geometry th	rough a Deductive Approach	
Simple Introduction to Deductive Geometry	 develop a deductive approach to study geometric properties through studying the story of Euclid and his book - <i>Elements</i> develop an intuitive idea of deductive reasoning by 	27
	presenting proofs of geometric problems relating with angles and lines	
	• understand and use the conditions for congruent and similar triangles to perform simple proofs	
	 identify lines in a triangle such as medians, perpendicular bisectors etc. 	
	• <u>explore and recognize the relations between the lines of</u> <u>triangles such as the triangle inequality, concurrence of</u> <u>intersecting points of medians etc.</u>	
	• explore and justify the methods of constructing centres of a triangle such as in-centre, circumcentre, orthocentre, centroids etc.	
	• **prove some properties of the centres of the triangle	
Pythagoras' Theorem	 recognize and appreciate different proofs of Pythagoras' Theorem including those in Ancient China 	8
	 recognize the existence of irrational numbers and surds use Pythagoras' Theorem and its converse to solve problems 	
	• appreciate the dynamic element of mathematics knowledge through studying the story of the first crisis of mathematics	
	• **investigate and compare the approaches behind in proving Pythagoras' Theorem in different cultures	
Quadrilaterals	 **explore various methods in finding square root extend the idea of deductive reasoning in handling geometric problems involving quadrilaterals 	15
	 deduce the properties of various types of quadrilaterals but with focus on parallelograms and special quadrilaterals 	
	 perform simple proofs related with parallelograms understand and use the mid-point and intercept theorems to find unknowns 	

Note: The objectives with asterisk (**) are considered as exemplars of **enrichment topics**. The objectives <u>underlined</u> are considered as **non-foundation** part of the syllabus.

Unit	Learning objectives	Suggested
		time ratio
Learning Geometry th	rough an Analytic Approach	
Introduction to	• understand and use the rectangular and polar coordinate	9
Coordinates	systems to describe positions of points in a plane	
	• able to locate a point in a plane by means of an ordered	
	pair in the rectangular coordinate system	
	• describe intuitively the effects of transformation such as	
	translation, reflection with respect to lines parallel to	
	x-axis, y-axis and rotation about the origin through	
	multiples of 90° on points in coordinate planes	
	• calculate areas of figures that can be cut into or formed	
	by common 2-D rectilinear figures	
Coordinate Geometry of	• understand and use formulas of distance and slope	12
Straight Lines	• use ratio to find the coordinates of <u>the internal point of</u>	
	division and mid-point	
	• understand the conditions for parallel lines and	
	perpendicular lines	
	• appreciate the analytic approach to prove results relating	
	to rectilinear figures besides deductive approach	
	• choose and use appropriate methods to prove results	
	relating to rectilinear figures	
	• **explore the formula for external point of division	
Trigonometry		
Trigonometric Ratios	• understand the sine, cosine and tangent ratios for angles	26
and Using	between 0° to 90°	
Trigonometry	• explore the properties and relations of trigonometric	
	ratios	
	• explore the exact value of trigonometric ratios on special	
	angles 30°, 45°, 60°	
	• rationalize the denominators such as $\sqrt{2}$	
	• apply trigonometric ratios to find measures of 2-D	
	figures	
	• introduce the ideas of bearing, gradient, angle of	
	elevation, angle of depression and solve related	
	2-dimensional problems	

Note: The objectives with asterisk (**) are considered as exemplars of **enrichment topics**. The objectives <u>underlined</u> are considered as **non-foundation** part of the syllabus.